466 NOTIZEN

The Electrical Conductivity of the Solid and Molten System Li₂SO₄-Na₂SO₄

Ann-Mari Josefson och Arnold Kvist

Department of Physics, Chalmers University of Technology, Göteborg, Sweden

(Z. Naturforsch. 24 a, 466-468 [1969]; received 6 February 1969)

The electrical conductivity of the solid and molten system $\rm Li_2SO_4\text{-}Na_2SO_4$ has been measured at different concentrations. The relative excess conductivities for the systems Li₂SO₄-Na₂SO₄ and Li₂SO₄-Ag₂SO₄ were found to be identical and are decreasing with increasing temperature.

In our investigations of electrical conductivities of solid and molten sulphates $^{1-8}$, we have now measured the electrical conductivity of the system $\rm Li_2SO_4-Na_2SO_4.$ Since a high temperature modification is formed in nearly equimolar Li₂SO₄-Na₂SO₄, this system is interesting. The phase diagram has recently 9 been published.

The experimental technique described previously has been used with small modifications 5.

Measurements have been performed at 13 different concentrations (Table 1). The scattering in the results for the different concentrations is in this system somewhat larger than for instance for Li₂SO₄-Ag₂SO₄ due to corrosion of the cells by the sodium ions. Especially the mixtures are corrosive.

t	×	t	ж		ж	t	ж	t	×	t	×
(°C)	$(\varOmega^{-1}\mathrm{cm}^{-1})$	(°C)	$(\varOmega^{-1}\mathrm{cm}^{-1})$	(°C)	$(\varOmega^{-1}\mathrm{cm}^{-1})$	(°C)	$(\Omega^{-1}\mathrm{cm}^{-1})$	(°C)	$(\varOmega^{-1}\mathrm{cm}^{-1})$	(°C)	$(\Omega^{-1} \mathrm{cm}^{-3})$
10 mole	% Na ₂ SO ₄	787.6	2.887	723.0	2.164	558.2	0.981	514.5	0.2527	911.5	2.433
1032.0	4.491	768.5	2.778	694.8	2.017	548.5	0.919	505.8	0.0704	866.2	2.289
1032.5 1022.5	$\frac{4.431}{4.485}$	739.8	2.625	679.8	1.941	539.0	0.868	500.8	0.0391	848.2	2.217
1013.3	4.432	715.8	2.485	666.0	1.867	530.4	0.817	497.8	0.0275	837.5	2.178
990.3	4.342	686.7	1.841	647.8	1.769	526.8	0.800			811.2	2.078
970.0	4.238	659.4	1.590	637.2	1.706			70 mole	$^{\circ}$ Na ₂ SO ₄	765.2	1.898
951.0	4.256 4.156	632.0	1.431	627.8	1.653	$60 \mathrm{mole}$	e% Na ₂ SO ₄			719.7	0.810
907.3	$\frac{4.130}{3.929}$	567.0	1.063	620.2	1.620		, 0	999.0	3.593	695.2	0.477
889.3	$\frac{3.929}{3.852}$	549.6	0.955	609.4	1.545	893.5	2.553	987.3	3.536	671.5	0.391
883.6	$\frac{3.832}{3.825}$	518.0	0.770	602.2	1.512	881.2	2.512	977.0	3.497	634.7	0.282
865.5	$\frac{3.825}{3.729}$	493.7	0.646	591.8	1.336	865.8	2.448	958.0	3.426		
				579.6	1.231	850.2	2.376	947.0	3.376	90 mole	% Na ₂ SO
850.3	3.656	30 mole	$e\% Na_2SO_4$	565.5	1.146	833.0	2.313	911.0	3.225		702
833.3	3.565			549.8	1.044	828.8	2.298	897.0	3.184	980.3	2.653
816.3	3.477	905.0	3.192	542.2	0.994	818.5	2.260	851.5	2.966	922.0	2.488
754.5	2.331	785.0	2.637	527.5	0.909	789.2	2.139	828.8	2.877	906.5	2.425
744.0	2.262	766.0	2.543	500.0	0.085	770.5	2.058	812.3	2.807	898.8	2.410
726.8	2.142	751.8	2.473	490.0	0.045	754.2	1.994	796.8	2.710	871.5	2.296
717.0	2.065	727.0	2.348			738.5	1.914	772.0	2.590	864.3	2.276
701.0	1.945	725.0	2.328	50 mole	$^{\circ}$ $^{\circ}$ $^{\circ}$ Na $_{2}$ SO $_{4}$	714.0	1.807	730.2	2.359	863.8	$\frac{2.216}{2.266}$
687.8	1.845	695.2	2.172	795.2	2.352	693.2	1.720	721.8	$\frac{2.330}{2.330}$	827.5	2.154
675.6	1.761	650.0	1.923	759.0	2.188	692.0	1.713	701.3	2.223	801.5	1.340
626.5	1.408	631.2	1.513	731.0	2.048	672.8	1.612	687.5	2.120	777.3	0.574
620.6	1.368	625.5	1.370	717.8	1.997	657.2	1.540	653.3	$\frac{2.130}{1.935}$	111.5	0.574
609.4	1.289	615.8	1.312	704.4	1.929	641.8	1.465	640.5	1.811	100 mol	e% Na ₂ SO
593.3	1.172	603.0	1.236	688.2	$\frac{1.929}{1.846}$	624.6	1.405 1.249	629.0	$\frac{1.511}{1.580}$	100 moi	e_0 Na ₂ 50
577.0	1.073	586.4	1.138	671.5	1.767	624.6 620.8	$\frac{1.249}{1.212}$			1067.5	9.701
554.3	0.924	546.8	0.922					615.8	1.330		2.791
548.3	0.884	537.5	0.876	657.5	1.690	613.5	1.103	597.6	1.211	1053.0	2.754
499.6	0.180	517.2	0.769	643.5	1.622	607.5	0.991	577.0	1.095	1029.0	2.676
493.8	0.152	503.0	0.696	636.2	1.588	597.2	0.819	558.8	0.991	995.3	2.597
466.0	0.116	484.0	0.386	631.2	1.553	586.8	0.657	545.0	0.920	959.3	2.496
	0,220	474.8	0.283	620.8	1.500	576.2	0.528	497.8	0.628	919.8	2.378
20 mole	e^{0} / ₀ Na ₂ SO ₄	11110	0.200	611.5	1.350	571.6	0.453	490.3	0.513	889.8	2.264
		40 mole	e^{0} / ₀ Na ₂ SO ₄	602.8	1.262	559.5	0.396			879.3	0.2457
940.5	3.622			588.8	1.169	557.6	0.3888	80 mole	$^{\circ}$ $^{\circ}$ $^{\circ}$ Na $^{\circ}$ SO 4	863.0	0.1789
924.2	3.567	783.8	2.459	578.8	1.107	552.8	0.3728			848.0	0.1335
901.0	3.463	767.0	2.379	571.2	1.060	544.2	0.3437	1065.0	2.900	834.5	0.1037
838.2	3.138	750.5	2.310	562.8	1.008	534.4	0.3109	1031.0	2.819	823.5	0.0844
819.5	3.036	738.8	2.249	561.5	1.000	525.2	0.2822	964.2	2.610	820.3	0.0795

Table 1. The obtained conductivity results for the solid and molten system Li₂SO₄-Na₂SO₄.

Dieses Werk wurde im Jahr 2013 vom Verlag Zeitschrift für Naturforschung in Zusammenarbeit mit der Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. digitalisiert und unter folgender Lizenz veröffentlicht: Creative Commons Namensnennung-Keine Bearbeitung 3.0 Deutschland

This work has been digitalized and published in 2013 by Verlag Zeitschrift für Naturforschung in cooperation with the Max Planck Society for the Advancement of Science under a Creative Commons Attribution-NoDerivs 3.0 Germany License.

¹ A. Kvist and A. Lundén, Z. Naturforsch. 20 a, 235 [1965].

A. Kvist, Z. Naturforsch. 21 a, 487 [1966].

³ A. Kvist, Z. Naturforsch. 21 a, 1221 [1966].

⁴ A. Kvist, Z. Naturforsch. **21a**, 1601 [1966].

A. Kvist, Z. Naturforsch. 22 a, 208 [1967].
 A. Kvist, Z. Naturforsch. 22 a, 467 [1967].

⁷ A. Kvist and U. Trolle, Z. Naturforsch. 22 a, 1633

A. KVIST and K. SCHROEDER, Z. Naturforsch. 23 a, 676

⁹ K. Schroeder and K. Kvist, Z. Naturforsch. 23 a, 773 [1968].

NOTIZEN 467

The molten state

The maximal deviation from additivity for the molar volumes in molten ${\rm Li_2SO_4-Na_2SO_4}$ is only 0.4% (l.c. 8) and the system can thus be considered ideal. The obtained equations for the molar conductivities are tabulated in Table 2. The specific conductivities for pure lithium and sodium sulphate have been published previously 2,6 , which also is the case for the mixtures with 2.0 and 4.9 ${\rm mole}\%$ 0 Na₂SO₄ (l.c. 10). Since it is possible to discuss the conductivities starting from different models, they are given both in linear and exponential form in the table.

$rac{mole^0}{Na_2SO}$		-b	s_1	Q	Λ_0	82	temperat. interval (°C)
0.0	0.34924	71.4	0.4	3930	1312	0.4	866-930
2.0	0.34868	73.3	0.3	3942	1306	0.3	867 - 917
4.9	0.32639	65.9	0.1	3885	1207	0.1	843 - 909
10.0	0.32248	69.0	0.3	4008	1237	0.3	816 - 1023
20.0	0.32646	93.9	0.6	4479	1368	0.6	716 - 941
30.0	0.31265	92.8	0.4	4580	1349	0.6	695 - 905
40.0	0.32918	111.3	0.4	5274	1822	0.8	602 - 784
50.0	0.31648	108.2	0.3	5303	1758	0.6	621 - 795
60.0	0.29091	97.4	0.5	5044	1441	0.9	642 - 894
70.0	0.32135	83.3	0.7	4272	1289	0.7	772 - 999
80.0	0.25488	71.4	0.9	4456	1071	0.8	765 - 1065
90.0	0.25988	71.8	0.7	4397	1070	0.7	828 - 980
100.0	0.25851	73.4	0.1	4441	1070	0.1	916 - 959

Table 2. The molar electrical conductivities of the molten system $\text{Li}_2\text{SO}_4\text{-Na}_2\text{SO}_4$ described by the relations $\varLambda=at+b$, where t is the temperature in °C, and $\varLambda=\varLambda_0\exp(-Q/RT)$, where Q is the Arrhenius activation energy, R the gas constant and T the temperature in °K. s is the standard deviation.

The system behaves as other systems normally do, if the Arrhenius activation energy (Q) is considered, i.e. Q is higher in the mixtures than in the pure salts.

In a paper two years ago ⁵ we have proposed a model for the transport mechanism in molten salts, where we assumed that the ions are moving in groups, each group containing several anions and cations. It was then also possible to estimate the number of cooperating ions from a rather rough model.

The ionic radii of the sodium and silver ions are almost equal, about 0.95 Å, which leads to a very small excess conductivity in mixtures between a sodium and a silver salt with a common anion. The relative excess conductivities for the systems Li₂SO₄—Ag₂SO₄ and Li₂SO₄—Na₂SO₄ are found to be identical, and this supports the idea that the conductivity excess only is caused by differences in the ionic radii between the cations. This can also be seen for the two systems Rb₂SO₄—Tl₂SO₄ and RbNO₃—TlNO₃ (l. c. ¹¹).

When the temperature increases, there should be a decrease in the coupling between the different ions and as is seen in Fig. 1 the relative excess conductivity decreases. This thus means that the number of cooperating ions

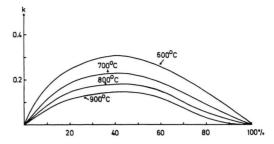


Fig. 1. The relative excess conductivity (k) as a function of the Me⁺ concentration, Me⁺ = Na⁺ or Ag⁺, for the system Li₂SO₄-Me₂SO₄.

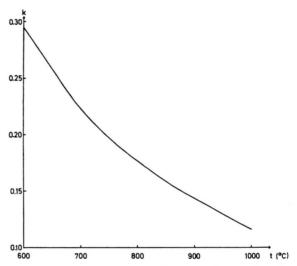


Fig. 2. The relative excess conductivity (k) as a function of the temperature for equimolar mixtures of Li₂SO₄ with Me₂SO₄, where Me = Na or Ag.

$rac{ m mole\%}{ m Na_2SO_4}$	$Q \ ({ m cal/mole})$	$(\varOmega^{-1}\operatorname{cm}^{-1})$	$(\varOmega^{-1}\overset{s}{\mathrm{cm}^{-1}})$
		fee	
0.0	9010	189.1	0.12
2.0	8 3 9 0	142.4	0.04
4.9	8310	131.2	0.02
10.0	7860	112.3	0.03
20.0	8710	197.0	0.01
30.0	7 630	99.7	0.01
40.0	8 100	147.9	0.01
		bee	
40.0	8 3 5 0	172.3	0.01
50.0	8 390	157.5	0.01
	hex	kagonal	
70.0	7 500	93.0	0.002
80.0	15 140	1255	0.001
90.0	22050	16340	0.006
100.0	46520	$1694\cdot 10^5$	0.002
100.0	47660	$2692\cdot 10^5$	0.002

Table 3. The specific electrical conductivities of the solid system $\text{Li}_2\text{SO}_4\text{-Na}_2\text{SO}_4$ described by the equation $\varkappa=\varkappa_0$ $\exp(-Q/RT)$. s is standard deviation of \varkappa .

¹⁰ A. Kvist, Thesis, Göteborg 1967.

¹¹ V. Wagner and S. Forcheri, Z. Naturforsch. **22 a**, 891 [1967].

468 NOTIZEN

decreases with the temperature, but the temperature dependence of the excess change seems to be smaller at higher temperatures. It is probably not possible to experimentally find the temperature at which the excess is zero (Fig. 2).

It is possible to use our previous model for a calculation of the number of cooperating ions, but no conclusions can at present be drawn from this approximation.

The solid state

There are three phases of particular interest, the f.c.c. phase in pure $\rm Li_2SO_4$ and in mixtures with up to 40 mole% $\rm Na_2SO_4$, the b.c.c. phase with 40 to 60 mole% $\rm Na_2SO_4$ and the hexagonal phase with 60 to 100 mole% $\rm Na_2SO_4$ (l.c. 9).

¹² A. Kvist and A. Bengtzelius, Z. Naturforsch. 23 a, 679 [1968].

The transformation temperatures obtained from the conductivity experiments are in good agreement with the DTA results. For the three pure phases equations are given in Table 3. In the f.c.c. and b.c.c. phases, the activation energies are almost equal, about 8.4 kcal/mole. In the hexagonal phase, Q decreases when the lithium sulphate and also the disorder concentration increases. The diffusion coefficient of Na⁺ in pure Li₂SO₄ has recently been determined 12 and diffusion experiments in lithium sulphate with different concentrations of sodium sulphate are in progress. A discussion of the transport mechanisms must therefore wait until the diffusion measurements are finished (l. c. 13).

This work was financially supported by Magnus Bergwalls Stiftelse.

13 A. Bengtzelius and A. Kvist, unpublished.

Diffusion in Cubic Sulphates

IV. ²²Na and ²⁴Na in f.c.c. Li₂SO₄

ANTE BENGTZELIUS and ARNOLD KVIST

Department of Physics, Chalmers University of Technology, Göteborg

(Z. Naturforsch. 21 a, 468 [1969]; received 7 February 1969)

Simultanous diffusion of $^{22}\mathrm{Na^+}$ and $^{24}\mathrm{Na^+}$ in cubic lithium sulphate has been studied. The relative difference in diffusion coefficients for the two ions is $(2.8\pm0.4)\%$. The results are compared with previously obtained values for the $^6\mathrm{Li}$ and $^7\mathrm{Li}$ mobilities in lithium sulphate.

Some years ago Lundén¹ measured the relative mobility of the $^6\text{Li}^+$ and $^7\text{Li}^+$ ions in cubic lithium sulphate of natural composition and also the electrical conductivities of $^6\text{Li}_2\text{SO}_4$ and $^7\text{Li}_2\text{SO}_4$ have been studied². The obtained relative differences in mobilities (b) were 2.1 and 4.2%, respectively. These values are lower than expected from a simple inverse mass root relation for the mobilities. The difference between $\Delta b/b$ for the isotopic pure salts and the mixture can easily be explained by assuming a cooperative transport model for the cations, where two ions are cooperating.

In a recent paper 3 we have reported on diffusion measurements of $\mathrm{Na^+}$ ions in pure lithium sulphate and we have assumed that the same mechanism is responsible for the lithium and sodium ion transport 4 . This might, however, be confirmed by measuring the difference in diffusion coefficient of $^{22}\mathrm{Na^+}$ and $^{24}\mathrm{Na^+}$ in lithium sulphate.

The experimental technique has mainly been described elsewhere⁵. The surface layer contained $^{22}\mathrm{Na^+}$ and $^{24}\mathrm{Na^+}$ of about the same radioactive strength. Gamma ray spectra were obtained by using a NaI(Tl)-crystal coupled to a multichannel analyzer. In the spectra, the intensity of the 0.54 MeV and 2.75 MeV peaks were compared and it was then possible to calculate $\Delta D/D$ by comparing the intensities with the spectrum of pure $^{24}\mathrm{Na}$. The experimental time was generally between two and three hours.

Temperature $(^{\circ}C)$	$\Delta D/D$ (%)
694	3.1
721	2.7
730	3.2
771	2.9
774	2.5
776	2.3

Table 1. The relative difference between the diffusion coefficients of ²²Na⁺ and ²⁴Na⁺ in cubic lithium sulphate.

The results are given in Table 1. No definite temperature dependence of the difference can be found from these measurements. The mean value of $\Delta D/D$ is (2.8 ± 0.4) % with the higher diffusion coefficient for $^{22}\mathrm{Na}^+$.

For two isotopes, one generally uses the relation

$$b_1/b_2-1=-t \Delta K((m_1/m_2)^{1/2}-1),$$

where m_i is the mass of the ion, f a correlation factor and ΔK has been related to the share of the kinetic energy at the diffusitive saddle point, which is associated with the diffusing ion rather than the surroundings 6 .

For small isotope differences we obtain in our case with f = 1:

$$\Delta K = 2 (\Delta D/D)/(\Delta m/m)$$
.

For $^{22}\mathrm{Na^+}$ and $^{24}\mathrm{Na^+}$ $\Delta K_\mathrm{Na} = 0.64$ and this value should be compared, not with the electromigration value, but with the conductivity results², which gave ΔK_Li , = 0.55. The two ΔK values are in fair agreement, but the results support our previous transport model, where the ions mainly are diffusing between the octahedral positions in the lattice.

This work was financially supported by the Swedish Council for Applied Research. Thanks are due to Dr. L. Broman for stimulating discussions.

¹ A. Lundén, Z. Naturforsch. 17 a, 142 [1962].

² A. Kvist, Z. Naturforsch. **21 a**, 487 [1966].

³ A. Kvist and A. Bengtzelius, Z. Naturforsch. **23 a**, 679 [1968].

⁴ A. Kvist, A. Bengtzelius and U. Trolle, Z. Naturforsch. 23 a, 2042 [1968].

⁵ L. Broman and K. Karlsson, Nucl. Instr. and Meth. 44, 174 [1966].

⁶ A. LODDING, Phys. Stat. Sol. 22, 157 [1967].